

In-Situ (Analytical) Instruments

O1

How did JPL get into this Biz, anyway?

- NASA missions changed from remote sensing or flyby to landers and rovers
- New Science requires sample analysis
 - Search for life-astrobiology
 - Detailed mineralogy
 - Search for materials to support human habitationwater/oxygen/ores
- New instruments with emphasis on *in-situ* analysis
 - small mass/power/footprint
 - These attributes fit commercial and NASA needs

JPL Analytical Instrument History

IN-SITU ANALYTICAL INSTRUMENT New Technology Reportsx-ray/gas/chemical/microscopies/mass spectrometry

JPL Biomedical Technology History

BIOMEDICAL New Technology Reports-biological/ sensor/imaging/bugs/human health

In-Situ Instruments

- New science requires "hands-on" instruments that work with samples and perform the functions of an analytical laboratory
 - Imaging-nanometer scale and up
 - Mass spectrometry
 - Gas chromatography-mass spectrometry
 - x-ray fluorescence
 - chemical composition and maps
 - elemental composition and maps
 - sensor nets for distributed instruments

Instrument Building Block Technologies

MEMS

Micro-fluidics

e-beam lithography

LIGA

integrated opto-electronics

novel materials

diffractive optics

Functionality I

Optical spectroscopies

- Imaging spectroscopy
- Raman
- Surface enhanced Raman
- Tunable Diode Laser spectroscopy for gas/chemical sensors and analyzers

Microscopies

- Atomic Force Microscopy
- Shear-force probe coupled with elemental Analysis-LIBS
- Proximal atom probe-see Wilson chart

Biodetection

- planetary protection program-sterilization of large spacecraft
- detection of bio-organisms on large surfaces
- High Q cavity biosensors
- Imaging sensors for gene/protein chips

6

Functionality II

Mass Spectrometry

- Miniature RF quadruple
- Magnetic sector
- rotating field
- Ion mobility

Sensors

- Force NMR
- electronic nose-chemical sensor
- Colormetric chemical sensors-ozone, for example

Mass Spectrometry for Disease Detection

- Volatile compounds in human breath have long been investigated for disease detection
 - lung cancer
 - organ failure
- Metabolic byproducts or *not* metabolized and should be

JPL System

- Atmospheric pressure system
- No vacuum system
- Compact
- Innovative ionizer

Evanescent wave chemical and biological sensor

Chemically or biologically selective layer

JPL Technology

- New technique to increase sensitivity by several orders of magnitude
- Can be used with any sensor film
- May be able to make sensor arrays

Electronic Tongue

- Similar approach as E-nose
 - Array of individual ion selective sensors
 - pattern recognition algorithms that require
 learning-no one sensor detects only <u>one</u> analyte
- Aqueous environment for new applications

Analytes for which ionophores have been reported

Inorganic Cations	H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , (Be ²⁺), Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mo ⁴⁺ , Fe ³⁺ , Cu ²⁺ , Ag ⁺ , Zn ²⁺ , Cd ²⁺ , Hg ²⁺ , Tl ⁺ , Bi ³⁺ , Pb ²⁺ , U ⁴⁺ , Sm ³⁺ , NH ⁴⁺
	Zn ²⁺ , Cd ²⁺ , Hg ²⁺ , Tl ⁺ , Bi ³⁺ , Pb ²⁺ , U ⁴⁺ , Sm ³⁺ , NH ⁴⁺
Inorganic Anions	CO ₃ ² , HCO ³ , SCN, NO ² , OH, phosphate, sulfite, SO ₄ ² , Cl, SeO ₃ ² , I
Organic Cations	1-phenylethylamine, 1-(1-naphthyl)-ethylamine, ephedrine, norephedrine,
	pseudoephedrine, amphetamine, propranolol, amino acid methyl esters, \alpha-amino-
	ε-caprolactam, amino acid amides, benzyl amine, alkyl amines, dopamine,
	mexiletine, local anaesthetics (procaine, prilocaine, lidocaine, bupivacaine,
	lignocaine), diquat and paraquat (herbicides), tetramethyl- and
	tetraethylammonium, guanidine, metformin, phenformin, creatinine, protamine
Organic Anions	salicylate, phthalate, maleate, 2-hydroxybenzhydroxamate, nucleotides, heparin
Neutral Analytes	CO_2 , O_2 , NH_3

JPL Technology is Early Technology

- JPL typically does not produce or patent technology at a level suitable for commercialization "as is"
- Goal is to produce instruments for science return
 - one of a kind
 - not reusable
 - science return is major driver, not cost
 - highly trained users or support staff acceptable
 - hardwired design that may be difficult to repair or manufacture in bulk

Technology Gaps

- JPL may have proof-of-concept experiment only
- The technology may need work in
 - manufacturability
 - process control
 - sensitivity
 - redesign away from instrument configuration
- These gaps need to be bridged to bring product to market-money and time
- Can perform the work at JPL with the inventor(s)
- Can perform the work in-house with inventor as consultant or without

How do you work with JPL/CIT?

- JPL's technology and intellectual property is mostly owned by the California Institute of Technology
 - JPL is operated by CIT for NASA and may elect to file on intellectual property under the Bayh-Dole act.
 - NASA may own some IP
- Licensing goes through the CIT office of Technology Transfer
- Licensee can work with JPL inventor to bridge the "gaps" to make a marketable device
 - JPL Technical Affiliates Program-need access to specialized equipment or expertise at JPL
 - Technical Affiliates is an existing program with a minimum of legal boilerplate that allows outside companies to fund work at JPL
 - Engage inventor as consultant

Contacts

- JPL-Dr. Gregory Bearman
 - -818-354-3285
 - gbearman@jpl.nasa.gov
- California Institute of Technology Technology Transfer Office
 - Dr. Rich Wolf 626-395-2322